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Abstract. By using the finite-time thermodynamic method, the optimal performances of a 
h o t  engine under the influence of thermal resistance, heat loss and other heversibilities are 
studied and the fundamental optimal relation for the engine is derived. Thus, a new theory for 
irreversible Camot cycles is established, together with some significant discussions. The results 
obtained here are more general and useful than those in the relevant litemhwe. 

1. Introduction 

According to classical thermodynamics, the upper bound on the efficiency of a heat engine 
is the so-called C;lmot’efficiency 

nc = 1 - TL/TH (1) 
where TH and TL are, respectively, the temperatures of the hot and cold reservoirs between 
which the heat engine operates. In fact, qc is invariably greater than the efficiency of 
real heat engines and hence is of very limited practical value, because it corresponds to a 
reversible operation, i.e. it is an infinitely slow operation and thus has zero power output. 
No practical engineer wants to design or build an engine which runs infinitely slowly 
without producing power. Therefore, it is necessaty.to determine a new upper bound on 
the efficiency of a heat engine by using a new model. This has resulted in the advent of a 
new field ‘finite-time thermodynamics’. 

Since the idea of finite-time thermodynamics was first advanced [l-51, considerable 
attention has been devoted to the problem of the best mode of operation of heat engines 
working in finite time. The most studied model consists of an endoreversible Camot cycle 
with finite heat transfer in the isothermal branches [1,6-9]. An upper bound can also 
be placed on the efficiency of a heat engine operating at its maximum power point: the 
so-called CA efficiency 

. 

~~ 

 OCA^= 1 - (2) 

where the sole source of irreversibility in the cycle is linear finite-rate heat transfer between 
the working fluid and its two heat reservoirs. ~ C A  has a more realistic significance than 
that of the reversible Camot engine provided by cIassical thermodynamics because of its 
maximum power output. 
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However, there are other sovrces of irreversibility in a real heat engine besides 
the irreversibility of finiterate heat transfer. A complete treatment must take all loss 
mechanisms into account. 

Recently, some new models of irreversible Camot engines which include other 
irreversibilities besides thermal resistance have been established [10-14] and some 
significant conclusions about irreversible Camot engines have been deduced. However, 
these models should be refined and developed further. 

In this paper, we study the optimal performances of Camot engines under the influence 
of thermal resistance, heat loss and other irreversibilities using a new irreversible Camot 
cycle model. The fundamental optimal relation of the engine is derived, and the different 
characteristics of the influences of various irreversibilities are expounded. Some new 
significant conclusions which are more general and useful than those in the relevant literature 
are obtained. These form a new theory of the irreversible Camot cycle, from which all 
the conclusions concerning a reversible Carnot engine, an endoreversible C m o t  engine 
only affected by thermal resistance and an irreversible Camot engine affected by various 
irreversibilities can be deduced. Thus it can serve as a guide to the evaluation of existing 
engines and the optimal design of future engines. 

2. A new irreversible Carnot engine model 

Consider the class of irreversible Carnot engines shown in figure 1, which satisfy the 
following four conditions: 

(i) The cycle of the engine consists of two isothermal and two adiabatic processes. The 
temperatures of the working fluid in the hot and cold isothermal processes are, respectively, 
TI and Tz, and the times of the two isothermal processes are, respectively, ti and tz. The 
temperatures of the hot and cold heat reservoirs are, respectively, TH and Ti. 

Figure 1. Schematic diagram of an irreversible Camot heat engine. 

(ii) There is thermal resistance between the working 5uid and two heat reservoirs, and 
the two thermal conductances are, respectively, 01 and p .  All heat transfer is assumed to 
be linear in temperature differences, that is, Newtonian. Therefore, we can write the heat 
Ql absorbed from the hot reservoir and the heat QZ released to the cold reservoir by the 
working fluid per cycle as follows 
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(iii) The heat Qi lost from the hot reservoir to the cold reservoir per cycle is given by 

ei = ci(rH - TL)r (5) 
where Ci is the coefficient of the heat loss, and r is the cyclic time. 

(iv) Besides thermal resistance and heat loss, there are other irreversibilities in the cycle. 
Because the total effect of the other irreversibilities can be characterized by increasing the 
change in entropy in the cold reservoir under a given absorbed heat Ql, we can take AS; 
and A &  as the changes in entropy in the cold reservoir during a cycle only affected by 
thermal resistance and also by the other irreversibilities except heat loss, respectively. Thus, 
we can introduce a parameter 

10 A&/A$ = Qz/Q; > 1 (6) 
to characterize the other irreversibilities, where Q; is the heat released to the cold reservoir 
in a cycle only affected by thermal resistance. It i s  evident $at there are no other 
irreversibilities except the thermal resistance when IO = 1. 

Using such a model, the fundamental optimal relation, i.e. the optimal relation between 
the power output and efficiency, for an irreversible Carnot heat engine can be derived, and 
from this relation, the optimal performance of the engine can be discussed. 

3. The fundamental optimal relation 

According to the engine model described above, the total heat QH released from the hot 
reservoir and the total heat QL transferred to the cold reservoir are, respectively, 

(7) QH = QI + Qi 

QL = QZ + Qi.  

and 

(8) 

On the other hand, according to the second law of thermodynamics, for an endoreversible 
Camot cycle, one has 

TzIZ = Q;/Qi. (9) 

T z / E  = Qz/UoQi). (10) 

Thus, from equation (6). we can get 

By using equations (IO) and U), the efficiency of the engine without heat loss may be 
expressed as 

vo = (QI - QdIQi = 1 - IoTdTi (11) 
and the efficiency of the engine with heat loss may be expressed as 

From equation (12), we can obtain the power output 

P = (Qi/r)vo = Iceif QJIrltl. 
Using equations (3), (4), (6) and (ll), one obtains 
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where y = i / ( f l  + q). When the two adiabatic processes are assumed to proceed in 
negligible time [MI, y = 1. 

From equation (14) and using the extrcmal condition aqo/aTz = 0, we can find that 
when 
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70 attains a maximum at a given Qi/r because (a2qo/aT:) < 0 in such a case. Substituting 
equation (15) into equation (14), one can obtain the optimal relation between qo and Ql / r :  

(16) 
where K = or/[y(l + -)'I. Again, substituting equation (16) into equation (IZ), we 
obtain the optimal relation between 

t lo = 1 -I&/& - Q I / ( K S ) I  

and el/?: 

Eliminating Ql / r  from equations (17) and (13) and, using equation (5),  one can obtain the 
fundamental optimal relation of an irreversible Carnot engine: 

(1 - tl)P2 - [K(TH - IoTL) Ci(2 - t l ) ( T ~  - TL) - K T ~ t l l q P  
+C~(TH - TL)[K(TH - IoTL) + G ( T H  - TL)]$ = 0. (18) 

4. Discussion and conclusion 

(i) The characteristic curve of power P against efficiency q for a Carnot engine including 
thermal resistance, heat loss and other irreversibilities described by equation (18) is a loop 
line passing through the zero point shown as curve I in figure 2. On such a curve, there is 
a maximum power point (point A in figure 2) at which the power output is at a maximum 
Pmax and the corresponding efficiency is qm, and a maximum efficiency point (point B in 
figure 2) at which the efficiency is at a maximum qmax and the corresponding power output 
is P,. qmu is different from the Camot efficiency qc and, in general, qmax is far less than 
qc, but is in close proximity to qm. These results mirror the observed performance of a real 
heat engine quite well [14]. 

(ii) From curve I in figure 2, it can be seen that the efficiency q and power output P of 
the engine are less than those at the maximum power point A when q c q,,,; and q and P are 
less than those at the maximum efficiency point B when P c P,. Therefore, the working 
states of q c q,,, and P c P,,, are not the optimal operating states of a real heat engine 
and the rational regions of the operating state should be set between the maximum power 
point and the maximum efficiency point, i.e. the negative slope regions of the characteristic 
curve P against 17. shown as the arc AB in figure 2. Thus, two new criteria for finite-time 
thermodynamics can be established for the selection of an optimal operating parameter for 
a real heat engine, that is the efficiency q and power output P of the engine should satisfy 
the following two equations: 

Vm < 7 < ~ m a x  (1% 
Pm < P < Pmax (20) 

respectively. This shows that the four parameters q,,,, q-. P,,, and Pmax which determine the 
lower and upper bounds of the efficiency and power output are four important performance 
parameters of an irreversible Camot engine. They are important guides and reference for 
the optimal design and the selection of optimal operating states of a real heat engine. Using 
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Figure 2. The power output against efficiency curves of an irreversible Camot heal engine: 
curve I, for a Camot engine including thermal resistance, heat loss and other irrevenibilities; 
curve 11, for a Camot engine including thermal resistance and heat loss; curve 111, for a Camot 
engine only affected by thermal resistance; and curve IV, for a reversible Camot engine. 

equation (18) and the extremal conditions, the following four parameters can be derived (a 
detailed derivation is given in the appendix): 

Vm = (1 - & m y /  (1 + PVC -&m) 

where p = C i / K .  
(iii) When Io = 1, equation (18) becomes 

(1 - V ) P z  - {(TH - TL)IKI + c i ( 2  - d l  - KIVTHhP f Ci(K1 f ci)(T~ - T&' = 0 

where K1 is the K for 10 = 1. Equation (25) is just the optimal relation of the efficiency 
and power output of an,irreversible Carnot engine only affected by thermal resistance and 
heat loss [ll]. Its characteristic curve P against is also loop shaped, as shown by curve U 
in figure 2. However, one can see that equation (18) is more useful and general than 
equation (25). because the former considers not only thermal resistance and heat loss but 
also the other irreversibilities of the heat engine, so that the characteristics of power output 
and efficiency of a real heat engine canbe reflected more accurately. As long as an accurate 
estimate of fo can be obtained, some more satisfactory results can be obtained. 

(25) 

If = 1 and Ci = 0, equation (18) can be simpliied as 

p = KIVITH - TL/(l - dl. (26) 
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Equation (26) is just the fundamental optimal relation of an endoreversible Carnot engine 
[8,9] and its characteristic curve P against q is shown as curve lIl in figure 2. It is not a 
loop line, and the maximum efficiency is the Carnot efficiency qc which corresponds to a 
zero power output Thus, there is no criterion for finitetime thermodynamics described by 
equation (20) for an endoreversible Camot engine. 

Besides IO = 1 and Ci = 0, if (Y -+ w and fl  3 00 (thus K1 + co), i.e. the 
thermal resistance can also be neglected, the engine becomes reversible. In such a case, 
equation (18) can be simplified to 
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7 = 1 - TL/TH =~qc (27) 
and the characteristic curve P against q is a straight line, running parallel with the vertical 
axis and cutting the horizontal axis at qc. This shows that the theory of irreversible Camot 
cycle established in this paper is also suitable for reversible Camot cycles. 

(iv) The characteristic curves P against q of a Camot cycle under the four different 
cases shown in figure 1 clearly reflect the fact that different sources of irreversibilities result 
in different influences on the performance of the cycle. 

First, for a reversible Carnot cycle, the P against q curve is a straight line located at 
q = qc. The efficiency of the cycle is only dependent on the temperatures of the hot and 
cold reservoirs and it is not relevant to the power output. This indicates that the power 
output of a reversible Camot cycle may be an arbitrary value, which is determined by the 
cyclic time r for a given work outpui. If r + 00, then P = 0, i.e. the point (0, qc) on the 
horizontal axis in figure 2. As r decreases, P increases, but q is invariant such that the P 
against q curve is a straight line from P = 0 to P --f 00, which corresponds to r from co 
to 0. 

Second, for an endoreversible Carnot cycle, thermal resistance exists, i.e. U and p are 
finite. In such a case, if the cycle attains Carnot efficiency qc, the cyclic time t would 
be infinite because the temperature differences between the working fluid and the two heat 
reservoirs need to be infinitesimal, so that the power output P would be zero. In other 
words, q = qc appears only at the zero power point on the P against q curve when the 
cycle has thermal resistance. For the cycle with a power output, the period r must be finite 
and thus the temperature differences between the working fluid and the two heat reservoirs 
must also be finite in order to transfer an amount of heat. Consequently, the efficiency 
q of the cycle is less than qc. and the shorter the period t is, the larger the temperature 
differences T, - TI and T2 - TL for heat transfer are and the further away q is in value 
from qc. When = Tz, the efficiency and power output both reach zero. Thus, besides the 
original zero power point q = qc3 there is a new zero power point at which the efficiency 
equals zero as well. At the same time, a maximum power point appears on the P against 
q curve (see curve III in figure 2). These results indicate clearly that the effect of thermal 
resistance on a Camot cycle changes the P against q curve from a straight line (for a 
reversible cycle, curve IV in figure 2) into a parabola (curve III in figure 2), and the shorter 
the period is, the larger the effect is. 

Curzon and Ahlborn [l] studied only the maximum power point of the endoreversible 
Carnot cycle. They derived the maximum power output P- and the corresponding 
efficiency qm. i.e. q a .  of the cycle, which makes a contribution to the establishment and 
development of a new subject-finite-time thermodynamics. 

Third, when the cycle has heat loss, i.e. Ci =/ 0. besides thermal resistance, one can 
see that the quantity of heat loss is in direct proportion to the period t from equation (5). 
Therefore, for a given heat absorbed by the cycle, the longer the period is and, hence, the 
larger the loss of heat is. When the period approaches infinity, not only does the power 
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output but also the efficiency approaches zero, such that the end point of the P against q 
curve for long period also tends to the zero point. This clearly explains why the P against 
q curve of an endoreversible Camot cycle changes from a parabola (curve JII in figure 2) 
into a loop (curve II in figure 2) under the influence of heat loss. For an endoreversible 
Camot cycle with heat loss, the maximum efficiency is not the Camot efficiency qc and, 
generally, it is far less than 70 This is just an important observed characteristic of real 
heat engines. The above results show that the effect of heat loss on the performance of a 
long-period cycle is more serious. This is the very opposite of what the thermal resistance 
effected. 

Fourth, if there are any other irreversibilities in the cycle besides thermal resistance and 
heat loss, the P against q curve is still a loop line passing through the zero point (curve I 
in figure 2). However, the maximum power output P,, and the corresponding efficiency 
qm, and the maximum efficiency q- and the corresponding power output P,,, of the cycle 
are all less than those of a cycle which does not have the other irreversibilities. In other 
words, the power output P and efficiency q of the cycle were correspondingly decreased 
by the effect of the other irreversibilities. 

To sum up, all sources of the irreversibilities in the cycle produce an effect on the power 
output and efficiency, and they each have different characteristics. Equation (18) gives a 
comprehensive description and figure 2 gives a vivid illustration. This has contributed to a 
better understanding of the effect of the various irreversibilities on the performance of real 
heat engines. 

(v) Some authors have introduced a parameter [15,16] 

IS = AsoutIASin (28) 

to describe the degree of internal irreversibility resulting from the working fluid, where ASi. 
and AS,,,, are, respectively, the changes in entropy of the working fluid in two isothermal 
branches at temperatures TI and Tz, and they are defined as positive. Obviously, for an 
endoreversible Carnot cycle, AS,, = AS,, and then IS  = 1. But, for an irreversible Camot 
cycle including the intemal irreversibilities. so long as the two adiabatic processes of the 
cycle are reversible, Asin still equals AS,, and 1s = 1. It is thus clear that the degree of 
internal irreversibility Is can describe only the internal irreversibilities of the two adiabatic 
processes, but not the two isothermal processes for an irreversible Carnot cycle. Therefore, 
when 1s = 1, the cycle may not be endoreversible, and the cyclic model inmduced in 
some references to include the irreversibilities of the finite-rate heat transfer between the 
heat engine and its reservoirs, heat loss between the reservoirs and using Is to describe the 
intemal dissipations of the working fluid, is not a general cyclic model of the irreversible 
Camot heat engine. It cannot describe all internal irreversibilities of the cycle, thus it is 
rather limited. 

(vi) Because real heat engines include thermal resistance, heat loss and other 
irreversibilities, equation (18) in which all the irreversibilities in the engine are included 
minors fairly the observed performances of real engines. From equation (18), the various 
optimal relations and the bounds of performances can be derived, so that the optimal 
performances of the engine can be discussed. For example, using the general relation 
among the rate of energy loss A P ,  power P and efficiency q [17] 

r l =  vcI(1 + A P I P )  (29) 

one can find the minimum rate of energy loss ( A P ) ~ "  for a Camot engine at a given 
power output P from equation (18). This is the minimum irreversible loss which cannot 
be avoided for an irreversible Carnot engine at a given power output. The main difference 
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between finite-time thermodynamics and classical thermodynamics is that the minimum 
irreversible loss which cannot be avoided in a cycle can be found in the former but not in 
the latter. Therefore, finite-time thermodynamics is more significant for real heat engines 
and the development of the theory of an irreversible Carnot cycle is an important step in 
the development of finite-time thermodynamics. 

Zijun Yan and Lixuan Chen 
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Appendix 

If we take equation (18) as a quadratic equation of the power output P 
A P ~  + BP + c = O  (AI) 

A = l - q  (W 
B = -[K(TH - [OTL) f ci(2 - V)(TH - TL) - KTHql? ('43) 
c = ci(TH - TL)[K(TG- IOTL) + ci(TH - TL)]$ (A4) 

and that the maximum efficiency of the heat engine satisfies the following equation (extrema1 
condition) 

(W 

Pm = -B/(2A). (A6) 
Equation (A5) is a quadratic equation of q, from which we obtain the maximum efficiency 
qmu as expressed by equation (22). Substituting equation (22) into equation (A6), we obtain 
Pm as expressed by equation (23). 

On the other band, if we take equation (18) as a quadratic equation of the efficiency q 

(A7) 

then we have 

2 B -4AC=O 

and the corresponding power output Pm is given by 

A'q2 + B'q + C' = 0 

then we have 

A' = Ci(TH - TL)[K(TH - [OTL) + Ci(TH - TL)] + [ci(TH - TL) f KTHlP (AS) 
B' = -[K(TH - IoTL) + 2 c i ( T ~  - TL)IP - P2 (AS) 
C'= PZ WO) 
and that the maximum power output of the heat engine satisfies the following equation 
(extrema1 condition) 

(Al l )  

qm = -B'/(2A'). (-412) 
Equation (Al l )  is a quadratic equation of P, from which we obtain the maximum power 
output Pmax as expressed by equation (24). Substituting equation (24) into equation (A12), 
we obtain q,,, as expressed by equation (21). 

n B -4A'C'=O 

and the correspondent efficiency q,,, is given by 
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